Home
Class 12
MATHS
If tan^(-1) x+tan^(-1)y+tan^(-1)z=pi/2 t...

If `tan^(-1) x+tan^(-1)y+tan^(-1)z=pi/2` then prove that `yz+zx+xy=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1)x+tan^(-1)y+tan^(-1) z=(3pi)/(2) then prove that xy+yz+zx=1

If tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/(2), prove that xy+yz+zx=1

If tan^(-1) x + tan^(-1) y - tan^(-1) z = 0 , then prove that : x+ y + xyz = z .

If tan^(-1)x+tan^(-1)y=(pi)/(2), then prove that xy=1

If tan^(-1)x+ tan^(-1)y + tan^(-1)z = pi , prove that x + y + z = xyz .

If tan ^ (- 1) x + tan ^ (- 1) y + tan ^ (- 1) z = pi prove that x + y + z = xyz

If tan^(-1) x +tan^(-1) y = pi/4 , xy lt 1 , then prove that x+y+xy=1 .

If tan ^(-1) x + tan ^(-1) y + tan ^(-1) z = (pi)/(2), then xy + yz+zx is equal to

If tan^(-1) x + tan^(-1)y + tan^(-1)z = pi show that : 1/(xy) + 1/(yz) + 1/(zx) = 1