Home
Class 12
MATHS
If sin^(-1) x + sin^(-1) y = pi/2, prove...

If `sin^(-1) x + sin^(-1) y = pi/2`, prove that `x sqrt(1-x^2) + y sqrt(1-y^2) =1`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(-1) x + sin^(-1) y + sin^(-1) z = pi" , prove that " x sqrt(1-x^(2) ) + y sqrt(1 - y^(2)) + zsqrt( 1 - z^(2)) = 2 xyz .

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi, prove that: x sqrt(1-x^(2))+y sqrt(1-y^(2))+z sqrt(1-z^(2))=2xyz

If sin^(-1)x + sin^(-1)y + sin^(-1)z =pi , prove that xsqrt(1 - x^(2)) + y sqrt(1 -y^(2)) + z sqrt(1-z^(2))= 2xyz .

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi prove that x sqrt(1-x^(2))+y sqrt(1-y^(2))+z sqrt(1-z^(2))=2xyz

If sin ^ (- 1) x + sin ^ (- 1) y + sin ^ (- 1) z = pi, Prove x sqrt (1-x ^ (2)) + y sqrt (1-y ^ (2) ) + z sqrt (1-z ^ (2)) = 2xyz

if,sin^(-1)x+sin^(-1)y+sin^(-1)z=pi then prove that x sqrt(1-x^(2))+y sqrt(1-y^(2))+z sqrt(1-z^(2))=2xyz

If sin^(-1)x + sin^(-1)y = pi/2 prove that 2(x^(2) -x^(2)y^(2) + y^(2)) = 1 + x^(4) +y^(4) .

If sin ^ (- 1) x + sin ^ (- 1) y = (pi) / (2), then prove that sin ^ (- 1) x = cos ^ (- 1) y

If sin^(-1) x + sin^(-1) y = (pi)/(2) and sin 2x = cos 2y , then

If cos^(-1)x+cos^(-1)y=pi/2 then prove that cos^(-1)x=sin^(-1)y