Home
Class 12
MATHS
Solve : sin^(-1)((2a)/(1+a^2)) + cos^(-1...

Solve : `sin^(-1)((2a)/(1+a^2)) + cos^(-1)( (1-b^2)/(1+b^2)) = 2 tan^(-1) x,|a|le1, |b|ge 0`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(-1)((2a)/(1+a^(2)))+sin^(-1)((2b)/(1+b^(2)))=2tan^(-1)x

Solve : sin^(-1)((2alpha)/(1+alpha^2)) + sin^(-1)( (2beta)/(1+beta^2)) =2 tan^(-1) x, |alpha|le1, |beta|le1

If cos^(-1) ((1-a^(2))/(1+a^(2)))- cos^(-1) ((1-b^(2))/(1+b^(2))) = 2 tan^(-1) x , then x is

if cos^(-1)((1-a^(2))/(1+a^(2)))-cos^(-1)((1-b^(2))/(1+b^(2)))=2tan^(-1)x then x is:

sin^(-1)((2a)/(1+a^(2)))+sin^(-1)((2b)/(1+b^(2)))=2tan^(-1)x , then x is equal to

If sin^(-1) ((2a)/(1+a^(2)))-cos^(-1)((1-b^(2))/(1+b^(2))) = tan ^(-1) ((2x)/(1-x^(2))), then : x =

Prove that : cos ^(-1) ((1- a^(2))/(1+a)) + cos ^(-1)((1-b^(2))/(1+b^(2))) = 2 tan ^(-1) .(a+b)/(1-ab)