Home
Class 12
MATHS
tan(sec^(-1)x )=sin(cos^(-1)(1/sqrt5))...

`tan(sec^(-1)x )=sin(cos^(-1)(1/sqrt5))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Value of x satisfying tan(sec^(-1)x)=sin(cos^(-1)((1)/(sqrt(5))))

tan (sec ^ (- 1) x) = sin (cos ^ (- 1) ((1) / (sqrt (5))))

If tan(cos^(-1)x)=sin(cot^(-1)1/2) then x is equal to- a.1/sqrt(5)b.2/sqrt(5)c.3/sqrt(5)d.sqrt(5)/3

Prove that cos[tan^(-1){sin(cos^(-1)x)}]=(1)/(sqrt(2-x^(2)))

tan(sin^(-1)((3)/(5))+cos^(-1)((3)/(sqrt(13)))=

if tan^(-1)(1/x)+cos^(-1)(2/sqrt5)=pi/4 then x equals

Solve for x : i) cos(sin^(-1)x)=1/2 ii) tan^(-1)x=sin^(-1)1/sqrt(2) iii) sin^(-1)x-cos^(-1)x=pi/6

tan (sec ^ (- 1) ((1) / (x))) = sin (cos ^ (- 1) ((1) / (sqrt (5))))

The value of tan^(-1)(sqrt3)+cos^(-1)((-1)/sqrt2)+sec^(-1)((-2)/sqrt3) is

If tan^(-1)x+cos^(-1)((y)/(sqrt(1+y^(2))))=sin^(-1)((3)/(sqrt(10))) , then