Home
Class 12
MATHS
If alpha + beta+gamma=pi, prove that sin...

If `alpha + beta+gamma=pi`, prove that `sin^2 alpha + sin^ beta - sin^2 gamma` = `2sinalpha sinbeta cosgamma`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha + beta- gamma= pi , prove that sin^(2)alpha + sin^(2)beta - sin^(2)gamma = 2sin alpha sin beta cos gamma .

Given alpha+beta-gamma=pi, prove that sin^(2)alpha+sin^(2)beta-sin^(2)gamma=2sin alpha sin beta cos gamma

Given alpha+beta-gamma=pi, prove that sin^(2)alpha+sin^(2)beta-sin^(2)gamma=2sin alpha sin beta cos gamma

If alpha+beta+gamma=2pi , prove that : cos^2 alpha + cos^2 beta + cos^2 gamma-2cosalpha cosbeta cosgamma=1 .

If alpha+beta-gamma=pi, and sin^(2)alpha+sin^(2)beta-sin^(2)gamma=lambda s in alpha s in beta cos gamma then write the value of lambda

If alpha + beta + gamma=pi, then the value of sin ^(2) alpha + sin ^(2) beta - sin^(2) gamma is equal to

If alpha+beta-gamma=pi , then sin^(2)alpha=sin^(2)beta-sin^(2)gamma is equal to