Home
Class 12
MATHS
If A+B+C=pi, prove that : tan( A/2) tan ...

If `A+B+C=pi`, prove that : `tan( A/2) tan (B/2) + tan (B/2 )tan (C/2)+ tan( C/2) tan (A/2) =1`

Promotional Banner

Similar Questions

Explore conceptually related problems

v) tan(A/2)tan(B/2)+tan(B/2)tan(C/2)+tan(C/2)tan(A/2)=1

If A+B+C=pi, show that : tan.(A)/(2)tan.(B)/(2)+tan.(B)/(2)tan.(C)/(2)+tan.(C)/(2)tan.(A)/(2)=1 Hence deduce that : cot.(A)/(2)+cot.(B)/(2)+.cot.(C)/(2)=cot.(A)/(2).cot.(B)/(2)tan.(C)/(2) .

(tan(B/2)-tan(C/2))/(tan(B/2)+tan(C/2))

If A+B+C= pi/2 , prove that tan A tan B+tan B tan C+tan C tan A=1

If A+B+C=pi, prove that tan^(2)(A)/(2)+tan^(2)(B)/(2)+tan^(2)(C)/(2)>=1

If A+B+C= pi , prove that tan A+tan B+tan C= tanA tan B tan C

(b-c)/(a) = (tan B/2-tan( c/2))/(tan B/2+tan C/2)

In DeltaABC , Prove that (s-a) tan (A/2)=(s-b) tan (B/2)=(s-c) tan (C/2)

If A+B+C=pi, prove that (tan A)/(tan B tan C)+(tan B)/(tan Atan C)+(tan C)/(tan A tan B)=tan A+tan B+tan C-2cot A-2cot B-2cot C

Prove that: tan(A+B)tan(A-B)=(tan^(2)A-tan^(2)B)/(1-tan^(2)A tan^(2)B)