Home
Class 12
MATHS
If A+B+C=pi, prove that: cotB cotC + cot...

If `A+B+C=pi`, prove that: `cotB cotC + cotC cotA +cotA + cotA cotB=1`.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=pi , prove that : (cotB+cotC) (cotC+cotA) (cotA+cotB)=cosecA cosecB cosecC

Prove that: cot2A + tanA= cotA - cot 2A

If A+B+C = pi , prove that : cotAcotBcotC=cotA+cotB +cotC-cosecAcosecBcosecC.

If A+B+C=pi/2 , show that : cotA+cotB+cotC=cotA cotB cotC

Prove that : cosec A- cot A =(1)/(cosecA+cotA)

Prove that: cotA-cot2A="cosec"2A

i) If A+B=pi/4 prove that: (cotA-1)(cotB-1)=2

Prove that- cot(A+B)=(cotA.cotB-1)/(cotA+cotB)

If A+B+C=pi , prove that : (cotA+cotB)/(tanA+tanB) + (cotB+cotC)/(tanB+tanC) + (cotC+cotA)/(tanC+tanA) =1

In a triangle A+B+C=90 then prove that cotA+cotB+cotC=cotAcotBcotC