Home
Class 12
MATHS
If A, B, C, D be the angles of a quadril...

If `A, B, C, D` be the angles of a quadrilateral, prove that : `(tanA+tanB+tanC+tanD)/(cotA+cotB+cotC+cotD) = tan A tan B tan C tan D`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A,B,C,D are the angles of a quadrilateral, then (tan A+tan B+tan C+tan D)/(cot A+cot B+cot C+cot D) is equal to: (a) tan A tan B tan C tan D(b)tan^(2)A+tan^(2)B+tan^(2)C+tan^(2)D(d)sum tan A tan B tan C

If A,B,C,D are the angles of quadrilateral, then find (sum tan A)/(sum cot A).

If A,B,C,D are the four angles taken in order of a cyclic quadrilateral prove that tan A+tan B+tan C+tan D=0

If A+C=B , then tan A tan B tan C = ?

(a) tan A+tan B+tan C=tan A tan B tan C

If A+B+C=pi , prove that : (tanA+tanB+tanC) (cotA+cotB+cotC)=1+secA secB secC .

If,A,B,C are angles of a triangle and if none of them is equal to (pi)/(2) ,then tan A+tan B+tan C is cot A cotB cot C tan A tan B tan C sin A sin B sin C cos A cos B cos C

(tan A+tan B-tan C+tan A tan B tan C)/(1-tan A tan B+tan B tan C+tan C tan A)

If A+B+C= pi , prove that tan A+tan B+tan C= tanA tan B tan C