Home
Class 12
MATHS
If A+B+C=pi, prove that : sin2A+sin2B+si...

If `A+B+C=pi`, prove that : `sin2A+sin2B+sin2C=4sinA sinB sinC`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C =pi , prove that sin 2A+sin 2B+sin 2C=4 sin Asin B sin C.

If A+B+C=pi, prove that sin2A-sin2B+sin2C=4cosA sin B cosC .

If A+B+C= pi/2 ,prove that: sin2A-sin2B+sin2C=4sinAcosBsinC

If A+B+C=pi , prove that : (sin 2A+sin 2B + sin 2C)/(sinA+sinB+sinC) = 8 sin(A/2) sin(B/2) sin(C/2)

If A+B+C=pi , prove that sin 2A+sin 2B-sin 2C=4 cos A cos B sin C

If A+B+C=pi , prove that sin 2A-sin 2B+sin 2C=4cos Asin B cos C.

If A+B+C=pi , prove that : cos2A+cos2B-cos2C=1-4sinA sinB cosC

If A+B+C=pi then prove that sin2A-sin2B+sin2C=4cos A sin B cos C

In DeltaABC ,prove that: sin2A + sin2B-sin2C=4cosA cosB sinC

If A+B+C=pi/2 , prove that: sin2A + sin2B+sin2C = 4cosA cosB cosC