Home
Class 12
MATHS
Prove that : (sin 2A+sin 2B + sin 2C)/(c...

Prove that : `(sin 2A+sin 2B + sin 2C)/(cos A + cos B + cos C-1) = 8 cos(A/2) cos( B/2) cos( C/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=pi , prove that sin 2A+sin 2B-sin 2C=4 cos A cos B sin C

If A+B+C=pi , prove that sin 2A-sin 2B+sin 2C=4cos Asin B cos C.

If A+B+C=pi , prove that : sin^2( A/2) + sin^2( B/2) -sin^2( C/2) =1-2 cos( A/2) cos(B/2) sin( C/2)

In a triangle ABC, Prove that: sin^3A+sin^3B+sin^3C= 3cos, A/2 cos, B/2 cos, C/2 +cos, (3A)/2 cos, (3B)/2 cos, (3C)/2

In a triangle ABC if (sin2A+sin2B+sin2C)/(cos A+cos B+cos C-1)=((lambda)/(2))cos((A)/(2))cos((B)/(2))cos((C)/(2)) then lambda equals

sin A + sin B + sin C = 4cos ((A) / (2)) cos ((B) / (2)) cos ((C) / (2))

a cos A + b cos B + c cos C = 2a sin B sin C

(sin2A+sin2B+sin2C)/(cos A+cos B+cos C-1)=((lambda)/(2))(cos A)/(2)(cos B)/(2)(cos C)/(2) then lambda=

If A+B+C=180^(@), prove that sin2A+sin2B-sin2C=4cos A cos B sin C

If A+B+C=pi then prove that sin2A-sin2B+sin2C=4cos A sin B cos C