Home
Class 12
MATHS
If A+B+C=pi, prove that : (tanA+tanB+tan...

If `A+B+C=pi`, prove that : `(tanA+tanB+tanC) (cotA+cotB+cotC)=1+secA secB secC`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=pi , prove that : (cotB+cotC) (cotC+cotA) (cotA+cotB)=cosecA cosecB cosecC

Prove that: (tanA + tanB)/(cotA+cotB)=tanAtanB

If A+B=pi/4 , prove that: (1+tanA)(1+tanB)=2

If A+B+C= pi prove that tan B tan C+tanc tan A+ tan A tan B =1 +sec A.secB sec C.

If A+B+C = pi , prove that : cotAcotBcotC=cotA+cotB +cotC-cosecAcosecBcosecC.

If A + B + C = π , Prove that tanB tanC+tanC tanA+tanA tanB=1+secA . sec B . secC.

In a DeltaABC , prove that : tanA+tanB+tanC= tanA tanB tanC

If A+B+C=pi , prove that: cotB cotC + cotC cotA +cotA + cotA cotB=1 .

If A+B+C= pi/2 , show that : tanA tanB + tanB tanC + tanC tanA=1