Home
Class 12
MATHS
If A+B+C=180^0, prove that : sin^2 A + s...

If `A+B+C=180^0`, prove that : `sin^2 A + sin^2 B + sin^2 C =2 (1+cosA cosB cosC)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=180^0 , prove that : cos^2 A + cos^2 B + cos^2 C + 2cosA cosB cosC=1 .

If A+B+C=pi/2 , prove that: sin2A + sin2B+sin2C = 4cosA cosB cosC

If A+B+C = pi , prove that : sin^(2)A +sin^(2)B +sin^(2)C = 2(1+cosAcosBcosC)

If A+B+C=180^(@) , prove that: "sin"^(2) A+"sin"^(2) B+"sin"^(2) C=2(1+cos A cos B cos C) .

If A+B+C=pi, prove that sin^(2)A+sin^(2)B+sin^(2)C=2(1+cos A cos B cos C)

If A+B+C = 180^0 , Prove that : sin^2 (A/2) + sin^2 (B/2) + sin^2 (C/2) =1-2 sin (A/2) sin (B/2) sin (C/2)

In DeltaABC ,prove that: sin2A + sin2B-sin2C=4cosA cosB sinC

If A+B+C=pi , prove that : sin^2( A/2) + sin^2( B/2) -sin^2( C/2) =1-2 cos( A/2) cos(B/2) sin( C/2)

If A + B + C = 180 ^ @ then (sin 2A + sin 2B + sin 2C) / (cosA + cosB + cosC - 1) =

If A+B+C=180^@ prove that sin A+sin B+sin C=4 "cos" A/2 "cos" B/2 "cos" C/2