Home
Class 12
MATHS
If A+B+C=180^0, prove that : cos^2 A+cos...

If `A+B+C=180^0`, prove that : `cos^2 A+cos^2 B-cos^2 C=1-2sinA sinB cosC`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=180^0 , prove that : cos^2 A + cos^2 B + cos^2 C + 2cosA cosB cosC=1 .

If A+B+C=pi , prove that : cos2A+cos2B-cos2C=1-4sinA sinB cosC

If A+B+C=180, prove that cos^(2)A+cos^(2)B+cos^(2)C=1-2cos A cos B cos C

If A+B+C=0 , Prove : cos^2 A + cos^2 B +cos^2 C=1+2cosA cosB cosC .

If A+B+C=180^0 , prove that : cos^2(A/2) + cos^2(B/2) - cos^2(C/2) = 2cos(A/2) cos(B/2) sin( C/2)

If A+B+C= pi/2 , show that : cos^2 A + cos^2 B + cos^2 C = 2 + 2 sinA sinB sinC .

If A+B+C=180^0 , prove that : cos^2( A/2) + cos^2( B/2) + cos^2(C/2) = 2+2 sin(A/2) sin( B/2) sin( C/2)

If A+B+C= 360^(@) ,prove that: 1-cos^(2)A-cos^(2)B-cos^(2)C+2cosA cos B cos C=0

If A+B+C = pi , prove that : cos2A +cos2B +cos2C =-1-4cosAcosBcosC .

If A+B+C = pi , prove that : cos2A-cos2B -cos2C = -1+4cosAsinBsinC