Home
Class 12
MATHS
If A+B+C=180^0, prove that : cos^2(A/2) ...

If `A+B+C=180^0`, prove that : `cos^2(A/2) + cos^2(B/2) - cos^2(C/2) = 2cos(A/2) cos(B/2) sin( C/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=180^0 , prove that : cos^2( A/2) + cos^2( B/2) + cos^2(C/2) = 2+2 sin(A/2) sin( B/2) sin( C/2)

If A+B+C=pi , prove that : sin^2( A/2) + sin^2( B/2) -sin^2( C/2) =1-2 cos( A/2) cos(B/2) sin( C/2)

If A+B+C=180^0 , prove that : cos^2 A + cos^2 B + cos^2 C + 2cosA cosB cosC=1 .

If A+B+C=pi then prove that cos^(2)((A)/(2))+cos^(2)((B)/(2))-cos^(2)((C)/(2))=2cos((A)/(2))cos((B)/(2))sin((C)/(2))

If A+B+C=180^0 , prove that : cos^2 A+cos^2 B-cos^2 C=1-2sinA sinB cosC

If A+B+C=180^(@), then prove that cos^(2)(A)/(2)+cos^(2)(B)/(2)+cos^(2)(C)/(2)=2(1+sin(A)/(2)sin(B)/(2)sin(C)/(2))

If A +B+C = 180^circ , prove that cos A/2+ cos B/2 +cos C/2 = 4cos (pi-A)/4 * cos(pi-B)/4 cos(pi-C)/4

If A+B+C=pi , prove that : sinA+sinB+sinC= 4cos( A/2 )cos( B/2) cos(C/2)

If A+B+C=180, prove that cos^(2)A+cos^(2)B+cos^(2)C=1-2cos A cos B cos C

If A+B+C=pi then prove cos( (A)/2) cos( (B-C)/2) + cos( B/2) cos((C-A)/2) + cos( C/2) cos( (A-B)/2) = sinA +sinB+sinC