Home
Class 12
MATHS
If A+B+C=pi and A+B=2C, prove that : 4 (...

If `A+B+C=pi and A+B=2C`, prove that : `4 (sin^2 A + sin^2 B - sinA sinB)=3`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C= pi/2 , show that : sin^2 A + sin^2 B + sin^2 C=1-2 sinA sinB sinC

If A+B+C=pi , prove that : sin (B+C-A) + sin (C+A-B) + sin (A+B-C)=4sinA sinB sinC

If A+B+C=pi , prove that : sin^2( A/2) + sin^2( B/2) -sin^2( C/2) =1-2 cos( A/2) cos(B/2) sin( C/2)

If A+B+C=pi , prove that : sin2A+sin2B+sin2C=4sinA sinB sinC

If A+B+C=pi , prove that : (sin 2A+sin 2B + sin 2C)/(sinA+sinB+sinC) = 8 sin(A/2) sin(B/2) sin(C/2)

If A+B+C =pi , prove that sin 2A+sin 2B+sin 2C=4 sin Asin B sin C.

If A+B+C=pi , Prove that : sin( A/2) + sin( B/2) + sin(C/2) =1 + 4 sin( (B+C)/(4)) sin( (C+A)/(4)) sin( (A+B)/(4))

If A+B+C=pi, prove that sin2A-sin2B+sin2C=4cosA sin B cosC .

In DeltaABC , prove that: a) (sin2A + sin2B + sin2C)/(sinA+sinB+sinC) = 8sinA/2 sinB/2sinC/2

If A+B+C = pi , prove that : sin^(2)A +sin^(2)B +sin^(2)C = 2(1+cosAcosBcosC)