Home
Class 12
MATHS
If A+B+C=2pi, prove that : cos^2B+cos^2C...

If `A+B+C=2pi`, prove that : `cos^2B+cos^2C-sin^2A-2cosA cosB cosC=0`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=2 pi, then prove that cos^(2)B+cos^(2)C-sin^(2)A=2cos A cos B cos C

If A+B+C=pi , prove that : cos2A+cos2B-cos2C=1-4sinA sinB cosC

If A+B+C=pi , prove that cos 2A +cos 2B +cos 2C=-1-4cos A cos Bcos C.

If A+B+C=pi/2 , prove that: sin2A + sin2B+sin2C = 4cosA cosB cosC

If A+B+C=180^0 , prove that : cos^2 A+cos^2 B-cos^2 C=1-2sinA sinB cosC

If A+B+C=180^0 , prove that : cos^2 A + cos^2 B + cos^2 C + 2cosA cosB cosC=1 .

If A+B+C=0 , Prove : cos^2 A + cos^2 B +cos^2 C=1+2cosA cosB cosC .

If A+B+C = pi , prove that : cosA- cosB - cosC = 1-4sinA//2cosB//2cosC//2 .

If A+B+C=pi , prove that : sinA cosB cosC +sinB cosC cosA + sinC cosA cosB = sinA sinB sinC .

If A+B+C=pi, prove that sin^(2)A+sin^(2)B+sin^(2)C=2(1+cos A cos B cos C)