Home
Class 12
MATHS
If A+B+C=pi/2, show that : cotA+cotB+cot...

If `A+B+C=pi/2`, show that : `cotA+cotB+cotC=cotA cotB cotC`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C = pi , prove that : cotAcotBcotC=cotA+cotB +cotC-cosecAcosecBcosecC.

If A+B+C=pi , prove that: cotB cotC + cotC cotA +cotA + cotA cotB=1 .

If A+B+C=pi , prove that : (cotB+cotC) (cotC+cotA) (cotA+cotB)=cosecA cosecB cosecC

In a triangle A+B+C=90 then prove that cotA+cotB+cotC=cotAcotBcotC

Prove that: cot2A + tanA= cotA - cot 2A

If A+B+C=pi , prove that : (tanA+tanB+tanC) (cotA+cotB+cotC)=1+secA secB secC .

If A+B+C=pi , prove that : (cotA+cotB)/(tanA+tanB) + (cotB+cotC)/(tanB+tanC) + (cotC+cotA)/(tanC+tanA) =1

If A+B+C=pi , show that : tanA+tanB+tanC=tanA.tanB.tanC Hence. Deduce the value of : cotA.cotB+cotB.tanC+cotC.cotA