Home
Class 12
MATHS
If A+B+C= pi/2, show that : tanA tanB + ...

If `A+B+C= pi/2`, show that : `tanA tanB + tanB tanC + tanC tanA=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

tanA +tanB + tanC = tanA tanB tanC if

If A+B+C=pi , show that : tanA+tanB+tanC=tanA.tanB.tanC Hence. Deduce the value of : cotA.cotB+cotB.tanC+cotC.cotA

In a DeltaABC , prove that : tanA+tanB+tanC= tanA tanB tanC

In DeltaABC , prove that: tanA/2tanB/2+tanB/2tanC/2+tanC/2tanA/2=1

If A + B + C = π , Prove that tanB tanC+tanC tanA+tanA tanB=1+secA . sec B . secC.

If ABC D is a cyclic quadrilateral, then find the value of sinA+sinB-sinC-sinD If A+B+C=(pi)/(2) , then find the value of tanA tanB+tanBtanC+tanC tanA

In DeltaABC , tanA+tanB+tanC=tanAtanBtanC

If A + B + C = 180^o then find tanA + tanB + tanC =

If A+B=pi/4 , prove that: (1+tanA)(1+tanB)=2