Home
Class 12
MATHS
If A+B+C=pi, prove that : (cosA)/(sinBsi...

If `A+B+C=pi`, prove that : `(cosA)/(sinBsinC) + (cosB)/(sinC sinA) + (cosC)/(sinA sinB) =2`.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=pi , then (cosA)/(sinBsinC)+(cosB)/(sinCsinA)+(cosC)/(sinAsinB)=?

If A+B+C=pi , prove that : cosA sinB sinC +cosB sinC sinA+cosC sinA sinB=1+cosA cosB cosC .

Prove that (1+cosA)/(sinA) + (sinA)/(1+cosA) = 2/(sin A)

If A+B+C=pi , prove that : sin2A+sin2B+sin2C=4sinA sinB sinC

If A+B+C=pi , prove that : sinA+sinB+sinC= 4cos( A/2 )cos( B/2) cos(C/2)

If A+B+C=pi , prove that : sinA cosB cosC +sinB cosC cosA + sinC cosA cosB = sinA sinB sinC .

If A+B+C=pi , prove that : cos2A+cos2B-cos2C=1-4sinA sinB cosC

If A+B+C=180 , prove that: sinA+sinB+sinC=4cosA/2cosB/2cosC/2

If A+B+C=pi , prove that : sin (B+C-A) + sin (C+A-B) + sin (A+B-C)=4sinA sinB sinC

If A+B+C = pi , prove that : cosA- cosB - cosC = 1-4sinA//2cosB//2cosC//2 .