Home
Class 12
MATHS
Show that sin (x-y) + sin (y-z) + sin (z...

Show that `sin (x-y) + sin (y-z) + sin (z-x) + 4sin((x-y)/(2)) sin( (y-z)/(2)) sin((z-x)/(2)) =0`

Promotional Banner

Similar Questions

Explore conceptually related problems

sin(x+y)sin(x-y)+sin(y+z)sin(y-z)+sin(z+x)sin (z-x)=0

Prove that sin x* sin y*sin(x - y) + sin y *sin z*sin(y- z) + sin z *sin x sin(z - x) + sin(x - y) *sin(y - z)*sin(z -x) = 0 .

sin ^ (- 1) x + sin ^ (- 1) y + sin ^ (- 1) z = (pi) / (2)

Prove that, sin x.sin y.sin (xy) + sin y * sin z * sin (yz) + sin z * sin x * sin (zx) + sin (xy) * sin (yz) * sin (zx) = 0

What is the value of [sin (y- z) +sin (y + z) + 2 sin y]//[sin (x-z) +sin (x + z) + 2 sin x] ? [sin (y- z) +sin (y + z) + 2 sin y]//[sin (x-z) +sin (x + z) + 2 sin x] का मान क्या है?

If sin^(-1) x+sin^(-1)y+sin^(-1)z=(3pi)/(2) , then

lf_ (cos x + cos y-cos z = 0 = sin x + sin y + sin) then cos ((xy) / (2)) =

What is the value of [sin (y – z) + sin (y + z) + 2 sin y]/[sin (x – z) + sin (x + z) + 2 sin x]?

If (sin^(-1)x+sin^(-1)w)(sin^(-1)y+sin^(-1)z)=pi^(2), then