Home
Class 12
MATHS
If A+B+C=pi, prove that : sin ((B+C)/(2)...

If `A+B+C=pi`, prove that : `sin ((B+C)/(2)) + sin ((C+A)/(2)) + sin( (A+B)/(2) )= 4cos ((pi-A)/(4)) cos( (pi-B)/(4)) cos((pi-C)/(4))`.

Promotional Banner

Similar Questions

Explore conceptually related problems

cos ((A) / (2)) + cos ((B) / (2)) - cos ((C) / (2)) = 4cos ((pi + A) / (4)) cos ((pi + B) / (4)) cos ((pi-c) / (4))

If A+B+C=pi, prove that sin((A)/(2))+sin((B)/(2))+sin((C)/(2))=1+4sin((pi-B)/(4))sin((pi-B)/(4))*sin((pi-C)/(4))

If A+B+C=pi then prove that sin((A)/(2))+sin((B)/(2))+sin((C)/(2))-1=4sin((pi-A)/(4))sin((pi-B)/(4))sin((pi-C)/(4))

If A+B+C=pi then prove that cos((A)/(2))+cos((B)/(2))+cos((C)/(2))=4cos((pi-A)/(4))cos((pi-B)/(4))cos((pi-C)/(4))

In triangle ABC, prove that sin((A)/(2))+sin((B)/(2))+sin((C)/(2))<=(3)/(2) Hence,deduce that cos((pi+A)/(4))cos((pi+B)/(4))cos((pi+C)/(4))<=(1)/(8)

If A+B+C=pi , Prove that : sin( A/2) + sin( B/2) + sin(C/2) =1 + 4 sin( (B+C)/(4)) sin( (C+A)/(4)) sin( (A+B)/(4))

sin A + sin B + sin C = 4cos ((A) / (2)) cos ((B) / (2)) cos ((C) / (2))

In triangle ABC,prove that cos((A)/(2))+cos((B)/(2))+cos((C)/(2))=4(cos(pi-A))/(4)(cos(pi-B))/(4)(cos(pi-C))/(4)

If A+B+C=pi, then prove that sin(B+2C)+sin(C+2A)+sin(A+2B)=4sin((B-C)/(2))sin((C-A)/(2))sin((A-B)/(2))

If A+B+C=pi , prove that : sin (B+C-A) + sin (C+A-B) + sin (A+B-C)=4sinA sinB sinC