Home
Class 12
MATHS
Prove that, in triangle ABC sin^3A cos(...

Prove that, in triangle ABC `sin^3A cos(B-C)+sin^3B cos(C-A)+sin^3C cos(A-B)=3sinAsinBsinC`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that,in triangle ABCsin^(3)A cos(B-C)+sin^(3)B cos(C-A)+sin^(3)C cos(A-B)=3sin A sin B sin C

In any triangle ABC,prove that sin^(3)A cos(B-C)+sin^(3)B cos(C-A)+sin^(3)C cos(A-B)=3sin A sin B sin C

In a ABC, prove that sin^(3)A cos(B-C)+sin^(3)B cos(C-A)+sin^(3)C cos(A-B)=3s in As in Bs in

Prove that in triangle ABC,cos^(2)A+cos^(2)B-cos^(2)C=1-2sin A sin B cos C

Prove that in a triangle ABC , sin^(2)A - sin^(2)B + sin^(2)C = 2sin A *cos B *sin C .

In any triangle ABC, prove that: a^(3)cos(B-C)+b^(3)cos(C-A)+c^(3)cos(A-B)=3abc

Prove that in /_ABC,a^(3)cos(B-C)+b^(3)cos(C-A)+c^(3)cos(A-B)=3abc

Prove that: sin(B-C)cos(A-D)+sin(C-A)cos(B-D)+sin(A-B)cos(C-D)

Prove that sin(A+B+C)=sin A cos B cos C+cos A sin B cos C+cos A cos B sin C-sin A sin B sin Ccos(A+B+C)=cos A cos B cos C-cos A sin B sin C-sin A cos B sin C-sin A sin B cos C