Home
Class 12
MATHS
Let O be the centre of the regular hexag...

Let O be the centre of the regular hexagon ABCDEF then find `vec(OA)+vec(OB)+vec(OD)+vec(OC)+vec(OE)+vec(OF)`

Promotional Banner

Similar Questions

Explore conceptually related problems

In a regular hexagon ABCDEF,vec AE

Let O be the centre of a regular pentagon ABCDE and vec(OA) = veca , then vec(AB) +vec(2BC) + vec(3CD) + vec(4DE) + vec(5EA) is equals:

Let O be the centre of a regular pentagon ABCDE and vec(OA) = veca , then vec(AB) +vec(2BC) + vec(3CD) + vec(4DE) + vec(5EA) is equals:

Let O be the centre of a regular hexagon ABCDEF. Find the sum of the vectors vec OA,vec OB,vec OC,vec OD,vec OE and vec OF .

ABCDEF is a regular hexagon. Show that : vec(OA)+vec(OB)+vec(OC)+vec(OD)+vec(OE)+vec(OF)=vec(0)

In a regular hexagon ABCDEF, prove that vec(AB)+vec(AC)+vec(AD)+vec(AE)+vec(AF)=3vec(AD)

Let O be the centre of a regular hexagon ABCDEF.Find the sum of the vectors OA;OB;OC;OD;OE and OF

In the regular hexagon shown in figure vec(AB)+vec(BC)+vec(CD)+vec(DE)+vec(EF)+vec(AF) can be expressed as :