Home
Class 12
MATHS
If O is the circumcentre and P the ortho...

If O is the circumcentre and P the orthocentre of `Delta ABC`, prove that `vec(OA)+ vec(OB) + vec(OC) =vec(OP)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If O is the circumcentre and P the orthocentre ( of Delta ABC, prove that )/(OA)+vec OB+vec OC=vec OP

If S is the cirucmcentre, G the centroid, O the orthocentre of a triangle ABC, then vec(SA) + vec(SB) + vec(SC) is:

If S is circumcentre, O is orthocentre of DeltaABC , then vec(SA)+vec(SB)+vec(SC) =

If O is the circumcentre,G is the centroid and O' is orthocentre or triangle ABC then prove that: vec OA+vec OB+vec OC=vec OO

If G is the centroid of a triangle ABC, prove that vec GA+vec GB+vec GC=vec 0

If O\ a n d\ O^(prime) are circumcentre and orthocentre of \ A B C ,\ t h e n\ vec O A+ vec O B+ vec O C equals a. 2 vec O O ' b. vec O O ' c. vec O ' O d. 2 vec O ' O

Let ABC be a triangle whose circumcentre is at P. If the position vectors of A, B, C and P are vec(a) , vec(b) , vec(c ) and (vec(a) + vec(b) + vec(c ))/(4) respectively, then the position vector of the orthocentre of this triangle is

If E is the intersection point of diagonals of parallelogram ABCD and vec( OA) + vec (OB) + vec (OC) + vec (OD) = xvec (OE) where O is origin then x=

Let O be an interior point of Delta ABC such that 2vec OA+5vec OB+10vec OC=vec 0