Home
Class 12
MATHS
Prove that the three points veca-2vecb+3...

Prove that the three points `veca-2vecb+3vecc, vec(2a)+3vecb-4vecc and -7vecb+10vecc` are collinear

Promotional Banner

Similar Questions

Explore conceptually related problems

i. Prove that the points veca - 2vecb + 3 vecc, 2 veca + 3vecb- 4 vecc and -7 vecb + 10 vecc are collinear, where veca, vec b and vecc are non-coplanar. ii. Prove that the points A(1, 2, 3), B(3,4, 7) and C(-3, -2, -5) are collinear. Find the ratio in which point C divides AB.

Show that the three points whose position vectors are veca-2vecb+3vecc, 2veca+3vecb-4vecc, -7vecb+10vecc are collinear

Show that the vectors veca-2vecb+3vecc,-2veca+3vecb-4vecc and - vecb+2vecc are coplanar vector where veca, vecb, vecc are non coplanar vectors

Show that the vectors 2veca-vecb+3vecc, veca+vecb-2vecc and veca+vecb-3vecc are non-coplanar vectors (where veca, vecb, vecc are non-coplanar vectors).

Prove that the four points 2veca+3vecb-vecc, veca-2vecb+3vecc,3veca+4vecb-2vecc and veca-6vecb+6vecc are coplanar where veca,vecb,vecc are non-coplanar vectors

If veca, vecb and vecc are non-coplanar vectors, prove that the four points 2veca+3vecb-vecc, veca-2vecb+3vecc, 3veca+4vecb-2vecc and veca-6vecb+ 6 vecc are coplanar.

The position vector of three points are 2veca-vecb+3vecc , veca-2vecb+lambdavecc and muveca-5vecb where veca,vecb,vecc are non coplanar vectors. The points are collinear when

Show that the points having position vectors (veca-2vecb+3vecc),(-2veca+3vecb+2vecc),(-8veca+13vecb) re collinear whatever veca,vecb,vecc may be

If veca, vecb and vecc are three non-zero, non-coplanar vectors,then find the linear relation between the following four vectors : veca-2vecb+3vecc, 2veca-3vecb+4vecc, 3veca-4vecb+ 5vecc, 7veca-11vecb+15vecc .

Prove that [veca+vecb, vecb+vecc ,vecc+veca]=2[veca vecb vecc]