Home
Class 12
MATHS
If AD, BE and CF be the median of a /\AB...

If `AD, BE and CF` be the median of a `/_\ABC`, prove that `vec(AD)+vec(BE)+vec(CF)`=0

Promotional Banner

Similar Questions

Explore conceptually related problems

If AD, BE and CF are the medians of a Delta ABC, then evaluate (AD^(2)+BE^(2)+CF^(2)): (BC^(2) +CA^(2) +AB^(2)).

AD BE and CF are the medians of a Delta ABC .Prove that 2(AD+BE+CF)<3(AB+BC+CA)<4(AD+BE+CF)

If AD, BE and CF are medians of triangle ABC then prove that median AD divides line segment EF.

If AD , BE and CF are medians of DeltaABC , then bar(AD) + bar(BE) + bar(CF) =

If AD, BE and CF are the medians of a ABC ,then (AD^(2)+BE^(2)+CF^(2)):(BC^(2)+CA^(2)+AB^(2)) is equal to

If G is the centroid of a triangle ABC, prove that vec GA+vec GB+vec GC=vec 0

In the figure, M is the mid - point of [AB] and N is the mid - point of [CD] and O is the mid - point of [MN]. Prove that : (i) vec(OA)+vec(OB)+vec(OC)+vec(OD)=vec(0) (ii) vec(BC)+vec(AD)=2vec(MN) .

If ABCD is quadrilateral and E and F are the mid-points of AC and BD respectively, prove that vec AB+vec AD+vec CB+vec CD=4vec EF

If ABCDEF is a regular hexagon, prove that vec(AC)+vec(AD)+vec(EA)+vec(FA)=3vec(AB)

Let D, E and F be the middle points of the sides BC,CA and AB, respectively of a triangle ABC. Then prove that vec AD+vec BE+vec CF=vec 0