Home
Class 12
MATHS
If veca, vecb, vecc, be three on zero no...

If `veca, vecb, vecc`, be three on zero non coplanar vectors estabish a linear relation between the vectors: ` 7vec+6vecc, veca+vecb+vec, 2veca-vecb+vecc, vec-vecb-vecc`

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc , be three on zero non coplanar vectors estabish a linear relation between the vectors: veca+3vecb=3vecc, veca-2vecb+3vecc, vec+5vecb-2vecc,6veca=14vecb+4vecc

If veca, vecb and vecc are three non-zero, non-coplanar vectors,then find the linear relation between the following four vectors : veca-2vecb+3vecc, 2veca-3vecb+4vecc, 3veca-4vecb+ 5vecc, 7veca-11vecb+15vecc .

If veca,vecb,vecc are non zero and non coplanar vectors show that the following vector are coplanar: 2veca-3vecb+4vec, -vec+3vecb-5vec,-veca+2vecb-3vec

If veca,vecb,vecc are non zero and non coplanar vectors show that the following vector are coplanar: 5veca+6vecb+7vecc,7veca-8vecb+9vecc, 3veca+20vecb+5vecc

If veca,vecb,vecc are non zero and non coplanar vectors show that the following vector are coplanar: 4veca+5vecb+vecc, -vecb-vecc, 5veca+9vecb+4vecc

If veca, vecb, vecc are three non-zero non-null vectors are vecr is any vector in space then [(vecb, vecc, vecr)]veca+[(vecc, veca, vecr)]vecb+[(veca, vecb, vecr)]vecc is equal to

veca,vecb and vecc are three non-coplanar vectors and r is any arbitrary vector. Prove that [[vecb, vecc,vec r]]veca + [[vecc, veca, vecr]]vecb +[[veca,vec b,vec r]]vecc = [[veca,vec b, vecc]]vecr

If veca, vecb and vecc are three non - zero and non - coplanar vectors such that [(veca,vecb,vecc)]=4 , then the value of (veca+3vecb-vecc).((veca-vecb)xx(veca-2vecb-3vecc)) equal to

For any three vectors veca, vecb, vecc the value of [(veca-vecb, vecb-vecc, vecc-veca)] , is

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca