Home
Class 12
MATHS
Examine whether the following vectors fr...

Examine whether the following vectors from a linearly dependent or independent set of vector: ` veca-3vecb+2vecc, vec-9vecb-vecc,3a+2vecb-vecc whre veca,vecb,vecc` are non zero non coplanar vectors

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the vectors veca-2vecb+3vecc,-2veca+3vecb-4vecc and - vecb+2vecc are coplanar vector where veca, vecb, vecc are non coplanar vectors

Show that the vectors 2veca-vecb+3vecc, veca+vecb-2vecc and veca+vecb-3vecc are non-coplanar vectors (where veca, vecb, vecc are non-coplanar vectors).

Prove that the four points 2veca+3vecb-vecc, veca-2vecb+3vecc,3veca+4vecb-2vecc and veca-6vecb+6vecc are coplanar where veca,vecb,vecc are non-coplanar vectors

For non zero vectors veca,vecb, vecc |(vecaxxvecb).vec|=|veca||vecb||vecc| holds iff

The position vector of three points are 2veca-vecb+3vecc , veca-2vecb+lambdavecc and muveca-5vecb where veca,vecb,vecc are non coplanar vectors. The points are collinear when

Let veca,vecb,vecc be three linearly independent vectors, then ([veca+2vecb-vecc 2veca+vecb+vecc4veca-vecb+5vecc])/([vecavecbvecc])

For non-zero vectors veca, vecb and vecc , |(veca xx vecb) .vecc = |veca||vecb||vecc| holds if and only if

Examine whather followig vectors are coplanar or nto: veca+vecb-vecc, veca-3vecb+vecc nd 2veca-vecb-vecc

If veca, vecb and vecc are non-coplanar vectors, prove that the four points 2veca+3vecb-vecc, veca-2vecb+3vecc, 3veca+4vecb-2vecc and veca-6vecb+ 6 vecc are coplanar.

If veca, vecb, vecc , be three on zero non coplanar vectors estabish a linear relation between the vectors: veca+3vecb=3vecc, veca-2vecb+3vecc, vec+5vecb-2vecc,6veca=14vecb+4vecc