Home
Class 12
MATHS
If |veca+vecb|=|veca-vecb|, (veca,vecb!=...

If `|veca+vecb|=|veca-vecb|, (veca,vecb!=vec0)` show that the vectors `veca and vecb` are perpendicular to each other.

Promotional Banner

Similar Questions

Explore conceptually related problems

If |veca+vecb|=|veca-vecb| show that veca_|_vecb .

If veca and vecb are two unit vectors such that veca+2vecb and 5veca-4vecb are perpendicular to each other, then the angle between veca and vecb is

If veca=hati+2hatj-3hatk and vecb=3hati+hatj+2hatk show that the vectors veca+vecb and veca-vecb are perpendicular to other.

l veca . m vecb = lm(veca . vecb) and veca . vecb = 0 then veca and vecb are perpendicular if veca and vecb are not null vector

If |veca|=|vecb| , then (veca+vecb).(veca-vecb) is equal to

If veca , vecb are two vectors such that | (veca+vecb)=|veca| then prove that 2 veca + vecb is perpendicular to vecb.

If veca , vecb are unit vectors such that the vector veca + 3vecb is peependicular to 7 veca - vecb and veca -4vecb is prependicular to 7 veca -2vecb then the angle between veca and vecb is

The vector (veca.vecb)vecc-(veca.vecc)vecb is perpendicular to

If veca, vecb and vecc are vectors such that |veca|=3,|vecb|=4 and |vec|=5 and (veca+vecb) is perpendicular to vecc,(vecb+vecc) is perpendicular to veca and (vecc+veca) is perpendicular to vecb then |veca+vecb+vecc|= (A) 4sqrt(3) (B) 5sqrt(2) (C) 2 (D) 12