Home
Class 12
MATHS
Prove that (veca-vecb)xx(veca+vecb)=2(ve...

Prove that `(veca-vecb)xx(veca+vecb)=2(vecaxxvecb)` also interpret this result.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: (2veca-vecb)xx (veca+2vecb)=5vecaxxvecb .

Show that, (veca-vecb)xx(veca+vecb) = 2(vecaxxvecb) .

Prove that: |(veca+vecb)xx(veca-vecb)|=2ab if veca_|_vecb

Prove that (vecaxxvecb)^2=veca^2b^2-(veca.vecb)^2 .

Show that (veca-vecb)xx(veca+vecb)=2vecaxx vecb and give a genometrical interpretation of it.

Show that (veca-vecb)xx(veca+vecb)=2vecaxx vecb and give a genometrical interpretation of it.

Prove that (veca+3vecb)xx(veca+vecb)+(3veca-5vecb)xx(veca-vecb)=0

If veca and vecb are unequal unit vectors such that (veca -vecb) xx [(vecb+veca) xx (2veca+vecb)]=veca+vecb , then angle theta between veca and vecb can be

Prove that: [(vecaxxvecb)xx(vecaxxvecc)].vecd=[veca vecb vecc](veca.vecd)

veca*vecb=abs(vecaxxvecb) then abs(veca-vecb) is