Home
Class 12
MATHS
If vecaxxvecb=vecbxxvecc!=vec0, then pro...

If `vecaxxvecb=vecbxxvecc!=vec0,` then prove that `veca+vecc=tvecb`, where t is a scalar.

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca.vecb=0 and vecaxxvecb=0 prove that veca=0 or vecb=vec0 .

veca,vecb,vecc are three vectors such that vecaxxvecb=vecc, vecbxxvecc=veca. Prove that veca,vecb,vecc are mutually at righat angles and |vecb|=1, |vecc|=|veca| .

If vecaxxvecb=vecc and vecbxxvecc=veca , show that veca,vecb,vecc are orthogonal in pairs. Also show that |vecc|=|veca| and |vecb|=1

If vecaxxvecb=vecc and vecbxxvecc=veca then a. veca,vecb,vecc are orthogonal in pairs and |veca|=|vecc|,|vecb|=1 b. veca,vecb,vecc are not orthogonal to each other c. veca,vecb,vecc are orthogonal in pairs but |veca|!=|vecc| d. veca,vecb,vecc are orthogonal but |vecb|=1 OR If vecaxxvecb=vecc,vecbxxvecc=veca , then

if veca xx vecb = vecc.vecb xx vecc = veca , " where " vecc ne vec0 then

if veca xx vecb = vecc.vecb xx vecc = veca , " where " vecc ne vec0 then

If veca.vecb=veca.vecc, vecaxxvecb=vecaxxvecc and veca!=vec0, then prove that vecb=vecc.

If veca+vecb+vecc=0 , prove that (vecaxxvecb)=(vecbxxvecc)=(veccxxveca)

Let veca,vecb,vecc be unit such that veca+vecb+vecc=vec0 . Which one of the following is correct? (A) vecaxxvecb=vecbxxvecc=veccxxveca=vec0 (B) vecaxxvecb=vecbxxvecc=veccxxveca!=vec0 (C) vecaxxvecb=vecbxxvecc=vecxxvecc!=vec0 (D) vecaxxvecb, vecbxxvecc, veccxxveca are mutually perpendicular

If (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc) where veca, vecb and vecc are any three vectors such that veca.vecb!=0, vecb. vecc!=0 then veca and vecc are