Home
Class 12
MATHS
Solve vecrxxvecb=vecaxxvecb, where veca,...

Solve `vecrxxvecb=vecaxxvecb, where veca, vecb` are two given vectors

Promotional Banner

Similar Questions

Explore conceptually related problems

A solution of the vector equation vecrxxvecb=vecaxxvecb , where veca, vecb are two given vectors is where lamda is a parameter.

Solve for vec x,vecx xx vec b=veca , where veca,vecb are two given vectors such that veca is perpendicular to vecb .

Solve: vecrxxvecb=veca, where veca and vecb are given vectors such that veca.vecb=0 .

If (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc) where veca, vecb and vecc are any three vectors such that veca.vecb!=0, vecb. vecc!=0 then veca and vecc are

If is given that vecx= (vecbxxvecc)/([veca,vecb,vecc]), vecy=(veccxxveca)/[(veca,vecb,vecc)], vecz=(vecaxxvecb)/[(veca,vecb,vecc)] where veca,vecb,vecc are non coplanar vectors. Find the value of vecx.(veca+vecb)+vecy.(vecc+vecb)+vecz(vecc+veca)

veca*vecb=abs(vecaxxvecb) then abs(veca-vecb) is

Solve veca.vecr=x, vecb.vecr=y, vecc.vecr=z , where veca,vecb,vecc are given non coplanar vectors.

If vecP = (vecbxxvecc)/([vecavecbvecc]).vecq=(veccxxveca)/([veca vecb vecc])and vecr = (vecaxxvecb)/([veca vecbvecc]), " where " veca,vecb and vecc are three non- coplanar vectors then the value of the expression (veca + vecb + vecc ). (vecq+ vecq+vecr) is

Vectors vecA and vecB satisfying the vector equation vecA+ vecB = veca, vecA xx vecB =vecb and vecA.veca=1 . Vectors and vecb are given vectosrs, are

Vectors vecA and vecB satisfying the vector equation vecA+ vecB = veca, vecA xx vecB =vecb and vecA.veca=1 . Vectors and vecb are given vectosrs, are