Home
Class 12
MATHS
Given veca=1/7 (2hati+3hatj+6hatk), vec=...

Given `veca=1/7 (2hati+3hatj+6hatk), vec= 1/7 (3hati-6hatj+2hatk) and vecc1/7(6hati+2hatj-3hatk)`. Show that `veca,vecb,vecc` are of unit length mutually perpendicular and that `vecaxxvecb=vecc`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the vectors 1/7(2hati+3hatj+6hatk), 1/7 (3hati-6hatj+2hatk) and 1/7 (6hati+2hatj-3hatk) are mutually perpendicular.

Let veca=hati-hatj+hatk, vecb=2hati+hatj+hatk and vecc=hati+hatj-2hatk , then the value of [(veca, vecb, vecc)] is equal to

If veca=2hati+5hatj-7hatk, vecb=-3hati+4hatj+hatk and vecc=hati-2hatj-3hatk , show that ((vecaxxvecb)xxvecc), vecaxx(vecbxxvecc) are not same .

Show that each of the following three vectors is a unit vector 1/7 (2hati+3hatj+6hatk), 1/7(3hati-6hatj+2hatk).1/7(6hati_2hatj-3hatk) . Also show that they are mutually perpendicular to each other.

If veca=7hati+3hatj-6hatk , vecb=2hati+5hatj-hatk and vecc=-hati+2hatj+4hatk . Find (veca-vecb)xx(vecc-vecb) .

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=7hati+3hatj-5hatk, vecb=2hati+5hatj-hatk and vecc-hati+2hatj+4hatk, then verify that vecaxx(b+c)=vecaxxvecb+vecaxxvecc

if veca=hati-hatj-3hatk, vecb=4hati-3hatj+hatk and vecc=2hati+hatj+2hatk, verify that vecaxx(vecb+vecc)=vecaxxvecb+vecaxxvecc

If vecA=2hati+hatj-hatk. vecB=hati+2hatj+3hatk and vecC=6hati-2hatj-6hatk then the angle between (vecA+vecB) and vecC will be :-

If vecA 2 hati +hatj -hatk, vecB=hati +2hatj +3hatk, vecC=6hati -2hatj-6hatk angle between (vecA+vecB) and vecC will be