Home
Class 12
MATHS
Let veca=(3,-1,0) and vecb=(1/2, 3/2, 1)...

Let `veca=(3,-1,0) and vecb=(1/2, 3/2, 1)` Fidnthe vector `vec c` satisfying `vecaxxvecc =4vecb and veca.vecc=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca=(0,1,-1,) and vecc=(1,1,1) are given vectors then find a vector vecb satisfying vecaxxvecb+vecc=0 and veca.vecb=3

Let veca=hatj-hatk and vecc=hati-hatj-hatk . Then the vector vecb satisfying vecaxxvecb+vecc=vec0 and veca.vecb=3 is

If vecA=(1,1,1) and vecC=(0,1,-1) are given vectors then find a vector vecB satisfying equations vecAxxvecB=vecC and vecA.vecB=3

If veca=hati+hatj+hatk and vec=hatj-hatk find a vector vecc such that vecaxxvecc=vecb and veca.vecc=3 .

Let veca=hati-hatj,vecb=hati+hatj+hatk and vecc be a vector such that vecaxxvecc+vecb=vec0 and veca.vecc=4 , then |vecc|^(2) is equal to:

Let veca,vecb,vecc be three vectors such that veca ne vec0 and veca xx vecb=2veca xx vecc, |veca|=|vecc|=1,|vecb|=4 and |vecbxxvecc|=sqrt(15) . If vecb-2vecc=lambdaveca , then |lambda| is equal to :

Let veca, vecb, vecc be three vectors such that a!=0 and veca xx vecb = 2veca xx vecc, |veca| = |vecc| = 1, |vecb| = 4 and |vecb xx vecc| = sqrt15. If vecb-2 vecc = lambda veca, then lambda is

Let veca, vecb and vec c be any three vectors; then prove that [[vecaxxvecb, vecbxxvecc, veccxxveca]] = [[veca, vecb, vecc]]^2

Let veca, vecb, vecc be three vectors of magntiude 3, 4, 5 respectively, satisfying | [[veca, vecb, vecc]] |=60. If (veca+2vecb+3vecc).((vecaxxvecc)xxvecb+vecb)=lambda then lambda is equal to

Angle between vectors veca and vecb " where " veca,vecb and vecc are unit vectors satisfying veca + vecb + sqrt3 vecc = vec0 is