Home
Class 12
MATHS
If veca=(0,1,-1,) and vecc=(1,1,1) are g...

If `veca=(0,1,-1,) and vecc=(1,1,1)` are given vectors then find a vector `vecb` satisfying `vecaxxvecb+vecc=0 and veca.vecb=3`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vecA=(1,1,1) and vecC=(0,1,-1) are given vectors then find a vector vecB satisfying equations vecAxxvecB=vecC and vecA.vecB=3

Let veca=hatj-hatk and vecc=hati-hatj-hatk . Then the vector vecb satisfying vecaxxvecb+vecc=vec0 and veca.vecb=3 is

If veca, vecb, vecc are three non-coplanar vectors, then a vector vecr satisfying vecr.veca=vecr.vecb=vecr.vecc=1 , is

If veca=hatj-hatk and vecc=hati+hatj+hatk are given vectors, and vecb is such that veca.vecb=3 and vecaxxvecb+vecc=0 than |vecb|^(2) is equal to ………………

The vectors veca and vecb are not perpendicular and vecac and vecd are two vectors satisfying : vecbxxvecc=vecbxxvecd and veca.vecd=0. Then the vecd is equal to (A) vecc+(veca.vecc)/(veca.vecb)vecb (B) vecb+(vecb.vecc)/(veca.vecb)vecc (C) vecc-(veca.vecc)/(veca.vecb)vecb (D) vecb-(vecb.vecc)/(veca.vecb)vecc

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If veca, vecb and vecc are three non zero vectors such that veca xx vecb = vecc and vecbxx vecc = veca. Prove that veca, vecb and vecc are mutually at right angles and |vecb|=1 and |vecc| =|veca|

If veca, vecb and vecc are vectors such that veca. vecb = veca.vecc, veca xx vecb = veca xx vecc, a ne 0. then show that vecb = vecc.

if veca , vecb ,vecc are three vectors such that veca +vecb + vecc = vec0 then

If veca, vecb and vecc 1 are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals