Home
Class 12
MATHS
Prove that (veca+3vecb)xx(veca+vecb)+(3v...

Prove that `(veca+3vecb)xx(veca+vecb)+(3veca-5vecb)xx(veca-vecb)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: (2veca-vecb)xx (veca+2vecb)=5vecaxxvecb .

Prove that: |(veca+vecb)xx(veca-vecb)|=2ab if veca_|_vecb

Prove that |veca xx vecb|^(2)=|{:(veca*veca,veca *vecb),(veca*vecb,vecb*vecb):}| .

If veca and vecb are unequal unit vectors such that (veca -vecb) xx [(vecb+veca) xx (2veca+vecb)]=veca+vecb , then angle theta between veca and vecb can be

If veca and vecb are unit vectors such that (veca +vecb). (2veca + 3vecb)xx(3veca - 2vecb)=vec0 then angle between veca and vecb is

If veca, vecb, vecc are vectors such that |vecb|=|vecc| then {(veca+vecb)xx(veca+vecc)}xx(vecbxxvecc).(vecb+vecc)=

If veca and vecb are two vectors , then prove that (vecaxxvecb)^(2)=|{:(veca.veca" ",veca.vecb),(vecb.veca" ",vecb.vecb):}|

If veca and vecb are two vectors , then prove that (vecaxxvecb)^(2)=|{:(veca.veca" ",veca.vecb),(vecb.veca" ",vecb.vecb):}|

If veca, vecb and vecc are three non - zero and non - coplanar vectors such that [(veca,vecb,vecc)]=4 , then the value of (veca+3vecb-vecc).((veca-vecb)xx(veca-2vecb-3vecc)) equal to

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca