Home
Class 12
MATHS
Prove that: (2veca-vecb)xx(veca+2vecb)=5...

Prove that:` (2veca-vecb)xx``(veca+2vecb)=5vecaxxvecb`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (veca-vecb)xx(veca+vecb)=2(vecaxxvecb) also interpret this result.

Show that, (veca-vecb)xx(veca+vecb) = 2(vecaxxvecb) .

Prove that: |(veca+vecb)xx(veca-vecb)|=2ab if veca_|_vecb

Prove that (veca+3vecb)xx(veca+vecb)+(3veca-5vecb)xx(veca-vecb)=0

Prove that: [(vecaxxvecb)xx(vecaxxvecc)].vecd=[veca vecb vecc](veca.vecd)

Prove that: (vecaxxvecb)xx(veccxxvecd)+(vecaxxvecc)xx(vecd xx vecb)+(vecaxxvecd)xx(vecbxxvecc)=2[vecb vecc vecd] veca

Prove that |veca xx vecb|^(2)=|{:(veca*veca,veca *vecb),(veca*vecb,vecb*vecb):}| .

Prove that (vecaxxvecb)^2=veca^2b^2-(veca.vecb)^2 .

Let veca and vecb be unit vectors such that |veca+vecb|=sqrt(3) , then the value of (2veca+5vecb)*(3veca+vecb+vecaxxvecb)=