Home
Class 12
MATHS
Show that the three points whose positio...

Show that the three points whose position vectors are `veca-2vecb+3vecc, 2veca+3vecb-4vecc, -7vecb+10vecc` are collinear

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the points having position vectors (veca-2vecb+3vecc),(-2veca+3vecb+2vecc),(-8veca+13vecb) re collinear whatever veca,vecb,vecc may be

Prove that the three points veca-2vecb+3vecc, vec(2a)+3vecb-4vecc and -7vecb+10vecc are collinear

Show that the points whose position vectors are veca,vecb,vecc,vecd will be coplanar if [veca vecb vecc]-[veca vecb vecd]+[veca vecc vecd]-[vecb vecc vecd]=0

If veca, vecb and vecc are non-coplanar vectors, prove that the four points 2veca+3vecb-vecc, veca-2vecb+3vecc, 3veca+4vecb-2vecc and veca-6vecb+ 6 vecc are coplanar.

Show that the points veca+2vecb+3c-2veca+3vecb+5vecc and 7veca-vecc are colinear.

Show that the vectors veca-2vecb+3vecc,-2veca+3vecb-4vecc and - vecb+2vecc are coplanar vector where veca, vecb, vecc are non coplanar vectors

Prove that the four points 2veca+3vecb-vecc, veca-2vecb+3vecc,3veca+4vecb-2vecc and veca-6vecb+6vecc are coplanar where veca,vecb,vecc are non-coplanar vectors

If veca, vecb and vecc are three non-zero, non-coplanar vectors,then find the linear relation between the following four vectors : veca-2vecb+3vecc, 2veca-3vecb+4vecc, 3veca-4vecb+ 5vecc, 7veca-11vecb+15vecc .

Prove th the following sets of three points are collinear: -2veca+3vecb+5vecc, veca+2vecb+3vecc, 6veca-vecc

If veca,vecb,vecc are non coplanar vectors, prove that the following points are coplanar: 6veca-4vecb+10vecc, -5vecas+3vecb-10vecc, 4veca-6vecb-10vecc,2vecb+10vecc