Home
Class 12
MATHS
If vector veca,vecb,vecc are coplanar t...

If vector `veca,vecb,vecc` are coplanar then find the value of `vecc` in terms of `veca and vecb`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the vectors vec a, b, c are coplanar, then the value of |(veca, vecb, vecc), (veca.a, veca.b, veca.c), (vecb.a, vecb.b, vecb.c)|

If vecA,vecB and vecC are coplanar vectors, then

If veca, vecb and vecc are three non-coplanar vectors, then find the value of (veca.(vecbxxvecc))/(vecb.(veccxxveca))+(vecb.(veccxxveca))/(vecc.(vecaxxvecb))+(vecc.(vecbxxveca))/(veca.(vecbxxvecc))

If veca, vecb and vecc are three non-coplanar vectors, then find the value of (veca.(vecbxxvecc))/(vecb.(veccxxveca))+(vecb.(veccxxveca))/(vecc.(vecaxxvecb))+(vecc.(vecbxxveca))/(veca.(vecbxxvecc))

If is given that vecx= (vecbxxvecc)/([veca,vecb,vecc]), vecy=(veccxxveca)/[(veca,vecb,vecc)], vecz=(vecaxxvecb)/[(veca,vecb,vecc)] where veca,vecb,vecc are non coplanar vectors. Find the value of vecx.(veca+vecb)+vecy.(vecc+vecb)+vecz(vecc+veca)

If the vectors veca, vecb, and vecc are coplanar show that |(veca,vecb,vecc),(veca.veca, veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc)|=0

If [(veca+2vecb+3vecc)xx(vecb+2vecc+3veca)],.(vecc+2veca+3vecb)]=54 where veca,vecb and vecc are 3 non - coplanar vectors, then the values of |{:(veca.veca,veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc),(vecc.veca,vecc.vecb,vecc.vecc):}| is equal to

If vecP = (vecbxxvecc)/([vecavecbvecc]).vecq=(veccxxveca)/([veca vecb vecc])and vecr = (vecaxxvecb)/([veca vecbvecc]), " where " veca,vecb and vecc are three non- coplanar vectors then the value of the expression (veca + vecb + vecc ). (vecq+ vecq+vecr) is

If vector veca,vecb,vecc are coplanar show that |(veca,vecb,vecc),(veca.veca,veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc)|

If the three vectors veca,vecb,vecc are non coplanar express each of vecbxxvecc, veccxxveca, vecaxxvecb in terms of veca,vecb,vecc .