Home
Class 12
MATHS
If n be integer gt1, then prove that sum...

If n be integer gt1, then prove that `sum_(r=1)^(n-1) cos (2rpi)/n=-1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sum_(r=1)^(10) = sin^(2) rpi/18 =5 .

Find the sum of sum_(r=1)^(n)cos(((2r-1)pi)/(2n+1))

If n be a positive integer, then prove that (1+i)^n+(1-i)^n=2^(n/2+1)."cos"((npi)/4)

Find the sum sum_(r=1)^(n)(cos((2r-1)pi))/((2n+1))

Prove that sum_(r=0)^(n)C_(r)sin rx cos(n-r)x=2^(n-1)sin(nx)

If n is a positive integer,then sum_(r=2)^(n)r(r-1)*C_(r) =

sum_(r=1)^(n-1)cos^(2)""(rpi)/(n) is equal to

prove that sum_(k=1)^(n)k2^(-k)=2[1-2^(-n)-n*2^(-(n+1)))

If n is a positive integer,then sum_(r=1)^(n)r^(2)*C_(r)=

Let k=1^(@), then prove that sum_(n=0)^(88)(1)/(cos nk*cos(n+1)k)=(cos k)/(sin^(2)k)