Home
Class 12
MATHS
Express veca,vecb,vecc in terms of vecbx...

Express `veca,vecb,vecc` in terms of `vecbxxvecc, veccxxveca and vecaxxvecb`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If the three vectors vec,vecb,vecc are non coplanar express vec,vecb,vecc each in terms of the vectors vecbxxvecc, veccxxveca,vecaxxvecb

If the three vectors veca,vecb,vecc are non coplanar express each of vecbxxvecc, veccxxveca, vecaxxvecb in terms of veca,vecb,vecc .

veca,vecb,vecc are non zero vectors. If vecaxxvecb=vecaxxvecc and veca.vecb=veca.vecc then show that vecb=vecc .

If veca,vecb,vecc are coplanar then show that vecaxxvecb, vecbxxvecc and veccxxveca are also coplanar.

If veca, vecb, vecc are three vectors, then [(vecaxxvecb, vecbxxvecc, veccxxveca)]=

Let veca, vecb, vecc be three vectors such that [(veca, vecb, vecc)]=2 . If vecr=l(vecbxxvecc)+m(veccxxveca)+n(vecaxxvecb) be perpendicular to veca+vecb+vecc , then the value of l+m+n is

If veca,vecb,vecc are three such that vecaxxvecb=vecc, vecbxxvecc=veca and veccxxveca=vecb , show that veca,vecb,vecc foem an orthogonal righat handed triad of unit vectors.

For three vectors veca, vecb and vecc , If |veca|=2, |vecb|=1, vecaxxvecb=vecc and vecbxxvecc=veca , then the value of [(veca+vecb,vecb+vecc,vecc+veca)] is equal to

Prove that the points A,B,C wth positon vectros veca,vecb,vecc are collinear if and only if (vecbxxvecc)+(veccxxveca)+(vecaxxvecb)=vec0

If [veca vecb vecc]=1 then value of (veca.vecbxxvecc)/(veccxxveca.vecb)+(vecb.veccxxveca)/(vecaxxvecb.vecc)+(vecc.vecaxxvecb)/(vecbxxvecc.veca) is