Home
Class 12
MATHS
Prove that the formula for the volume V ...

Prove that the formula for the volume V of a tetrahedron, in terms of the lengths of three coterminous edges and their mutul inclinations is `V^2=(a^2b^2c^2)/36 |(1,cosphi,cospsi),(cosphi,1,costheta),(cospsi, costheta, 1)|`

Promotional Banner

Similar Questions

Explore conceptually related problems

costheta/(cosec theta+1)+costheta/(cosectheta-1)=2

Evaluate (1-costheta)^2+(sintheta)^2

Evaluate (1-costheta)^2+(sintheta)^2

(sin^(2)theta)/(costheta(1+costheta))+(1+costheta)/(costheta)=?

Evaluate [(1+costheta)/sintheta]^2

The determinant |(cos(theta+phi),-sin(theta+phi),cos2phi),(sintheta,costheta,sinphi),(-costheta,sintheta,cosphi)| is

Prove that- (1-costheta)/(1+costheta)=(cosectheta-cottheta)^2