Home
Class 12
MATHS
Prove that vecaxx(vecbxxvecc)+vecbxx(vec...

Prove that `vecaxx(vecbxxvecc)+vecbxx(veccxxveca)+veccxx(vecaxxvecb)=vec0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that vecaxx(vecb+vecc)+vecbxx(vecc+veca)+veccxx(veca+vecb)=0

Show that the vectors vecaxx(vecbxxvecc) ,vecbxx(veccxxveca) and veccxx(vecaxxvecb) are coplanar.

For any three vectors veca, vecb, vecc the value of vecaxx(vecbxxvecc)+vecbxx(veccxxveca)+veccxx(vecaxxvecb) , is

(vecbxxvecc)xx(veccxxveca)=

Prove that vecA.(vecAxxvecB)=0

If (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc) then

Let veca, vecb, vecc be any three vectors.Then vectors vecu=vecaxx(vecbxxvecc), vecv=vecbxx(veccxxveca) and vecw=veccxx(vecaxxvecb) are such that they are

Prove that: vecaxx[vecbxx(veccxxveca)]=(veca.vecb)(vecaxxvecc)

Prove that (vecbxxvecc)xx(veccxxveca)=[veca vecb vecc]vecc

Prove that (vecbxxvecc)xx(veccxxveca)=[veca vecb vecc]vecc