Home
Class 12
MATHS
Prove that : vecixx(vecaxxveci)+vecjxx(v...

Prove that : `vecixx(vecaxxveci)+vecjxx(vecaxxvecj)+veckxx(vecaxxveck)=vec(2a)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that vecixx(vecjxxveck)=vec0

Prove that hati xx(vecaxxveci)+hatjxx(vecaxxvecj)+hatkxx(vecaxxveck)=2veca

Prove that vec(a)xx(vec(b)+vec(c))+vec(b)xx(vec(c)+vec(a))+vec(c)xx(vec(a)+vec(b))=0

For an vector veca the value of hatixx(vecaxxveci)+hatjxx(vecaxxhatj)+hatkxx(vecaxxveck) , is

Prove that (vec a-vec b)(vec b-vec c)xx(vec c-vec a)=0

Prove that (vec(a)-vec(b)) xx (vec(a) +vec(b))=2(vec(a) xx vec(b))

Prove that : {(vec(b)+vec(c ))xx(vec(c )+vec(a))}.(vec(a)+vec(b))=2[vec(a)vec(b)vec(c )]

Prove that : (vec(b)+vec(c )).{(vec(c )+vec(a))xx(vec(a)+vec(b))}=2 [vec(a)vec(b)vec(c )] .

Prove that (vec b xxvec c) xx (vec c xxvec a) = [vec with bvec c] vec c

Prove that (vec(a) + vec(b)) xx (vec(a) - vec(b)) = 2 (vec(b) xx vec(a))