Home
Class 12
MATHS
If veca,vecb,vecc are coplanar then show...

If `veca,vecb,vecc` are coplanar then show that `vecaxxvecb, vecbxxvecc and veccxxveca` are also coplanar.

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca,vecb,vecc are coplanar, show that veca+vecb, vecb+vecc, vecc+veca are also coplanar.

If veca,vecb,vecc be three non coplanar vectors show that vecbxxvecc,veccxxveca,vecaxxvecb are non coplanar.

Prove that veca,vecb,vecc are coplanar iff vecaxxvecb,vecbxxvecc,veccxxveca are coplanar

If veca, vecb, vecc are three vectors, then [(vecaxxvecb, vecbxxvecc, veccxxveca)]=

If veca,vecb,vecc are three such that vecaxxvecb=vecc, vecbxxvecc=veca and veccxxveca=vecb , show that veca,vecb,vecc foem an orthogonal righat handed triad of unit vectors.

Prove that [vecaxxvecb, vecbxxvecc, veccxxveca] = [[veca.veca, veca.vecb, veca.vecc], [veca.vecb,vecb.vecb, vecb.vecc], [veca.vecc, vecb.vecc,vecc.vecc]] = [veca, vecb, vecc]^2,Hence show that vectors vecaxxvecb, vecbxxvecc, veccxxveca are non-coplanar if and only if vectors veca, vecb, vecc are non-coplanar

If veca, vecb, vecc are non coplanar vectors such that vecbxxvecc=veca, vecaxxvecb=vecc aned veccxxveca=vecb then (A) |veca|+|vecb|+|vecc|=3 (B) |vecb|=1 (C) |veca|=1 (D) none of these

If veca, vecb, vecc, vecd are coplanar vectors, then (vecaxxvecb)xx(veccxxvecd)=

If veca,vecb,vecc are coplanar vectors , then show that |{:(veca,vecb,vecc),(veca*veca,veca*vecb,veca*vecc),(vecb*veca,vecb*vecb,vecb*vecc):}|=vec0

If the vectors veca, vecb, vecc, vecd are coplanar show that (vecaxxvecb)xx(veccxxvecd)=vec0