Home
Class 12
MATHS
Show that the vectors vecaxx(vecbxxvecc)...

Show that the vectors `vecaxx(vecbxxvecc) ,vecbxx(veccxxveca) and veccxx(vecaxxvecb)` are coplanar.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that vecaxx(vecbxxvecc)+vecbxx(veccxxveca)+veccxx(vecaxxvecb)=vec0

Let veca, vecb, vecc be any three vectors.Then vectors vecu=vecaxx(vecbxxvecc), vecv=vecbxx(veccxxveca) and vecw=veccxx(vecaxxvecb) are such that they are

If (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc) then

Prove that vecaxx(vecb+vecc)+vecbxx(vecc+veca)+veccxx(veca+vecb)=0

(vecbxxvecc)xx(veccxxveca)=

For any three vectors veca, vecb, vecc the value of vecaxx(vecbxxvecc)+vecbxx(veccxxveca)+veccxx(vecaxxvecb) , is

[((vecaxxvecb)xx(vecbxxvecc),(vecbxxvecc)xx(veccxxveca),(veccxxveca)xx(vecaxxvecb))] equal to

Prove that: vecaxx[vecbxx(veccxxveca)]=(veca.vecb)(vecaxxvecc)

Express veca,vecb,vecc in terms of vecbxxvecc, veccxxveca and vecaxxvecb .

If veca, vecb, vecc are three non coplanar, non zero vectors then (veca.veca)(vecbxxvecc)+(veca.vecb)(veccxxveca)+(veca.vecc)(vecaxxvecb) is equal to