Home
Class 12
MATHS
Vectors vecx,vecy,vecz each of magnitude...

Vectors `vecx,vecy,vecz` each of magnitude `sqrt(2)` make angles of `60^0` with each other. If `vecx xx(vecyxxvecz)=veca ,vecyxx(veczxxvecx) =vecb and vecx xxvecy=vecc`, find `vecx, vecy, vecz` in terms of `veca,vecb and vecc`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If vecx xxvecy=veca, vecy xx vecz=vecb, vecx.vecb=gamma, vecx.vecy=1 and vecy.vecz=1 then find x,y,z in terms of veca,vecb and gamma .

Let vecx, vecy and vecz be unit vectors such that vecx+vecy+vecz=veca, vecx xx(vecyxxvecz)=vecb, (vecx xxvecy)xxvecz=vecc, veca.vecx=3/2, veca.vecy=7/4 and \|veca|=2 . Find vecx,vecy,vecz in terms of veca,vecb,vecc.

If vecx.veca=0vecx.vecb=0 and vecx.vecc=0 for some non zero vector vecx then show that [veca vecb vecc]=0

If the three vectors veca,vecb,vecc are non coplanar express each of vecbxxvecc, veccxxveca, vecaxxvecb in terms of veca,vecb,vecc .

If vecX = vecA xx(vecB xxvecC) , then vecX can be expressed as :

If (veca xx vecb) xx vecc = veca xx (vecb xx vecc) where veca, vecb and vecc are any three vectors such that veca.vecb =0, vecb.vecc=0 then veca and vecc are:

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

Solve the following simultaneous equation for vecx and vecy : vecx + vecy=veca, vecx xxvecy=vecb and vecx.veca=1