Home
Class 12
MATHS
Let veca,vecb,vecc be unit such that vec...

Let `veca,vecb,vecc` be unit such that `veca+vecb+vecc=vec0`. Which one of the following is correct? (A) `vecaxxvecb=vecbxxvecc=veccxxveca=vec0` (B) `vecaxxvecb=vecbxxvecc=veccxxveca!=vec0` (C) `vecaxxvecb=vecbxxvecc=vecxxvecc!=vec0` (D) `vecaxxvecb, vecbxxvecc, veccxxveca` are mutually perpendicular

Promotional Banner

Similar Questions

Explore conceptually related problems

Let veca, vecb ,vecc be unit vetors such that veca + vecb + vecc = vec0 , which one of the following is correct ?

If veca+2vecb=3vecb=0, then vecaxxvecb+vecbxxvecc+veccxxveca= (A) 2(vecaxxvecb) (B) 6(vecbxxvecc) (C) 3(veccxxveca) (D) 0

Prove that vecaxx(vecbxxvecc)+vecbxx(veccxxveca)+veccxx(vecaxxvecb)=vec0

If veca+vecb+vecc=0 , prove that (vecaxxvecb)=(vecbxxvecc)=(veccxxveca)

If vecc=vecaxxvecb and vecb=veccxxveca then (A) veca.vecb=vecc^2 (B) vecc.veca.=vecb^2 (C) veca_|_vecb (D) veca||vecbxxvecc

[((vecaxxvecb)xx(vecbxxvecc),(vecbxxvecc)xx(veccxxveca),(veccxxveca)xx(vecaxxvecb))] equal to

Prove that: [vecaxxvecb ,vecbxxvecc ,veccxxveca] = [veca vecb vecc]^2

If veca, vecb, vecc are three vectors, then [(vecaxxvecb, vecbxxvecc, veccxxveca)]=

If veca.vecb=veca.vecc, vecaxxvecb=vecaxxvecc and veca!=vec0, then prove that vecb=vecc.

If (vecaxxvecb)xxvecc=vecax(vecbxxvecc0 then (A) (veccxxveca)xxvecb=0 (B) vecbxx(veccxxveca)=0 (C) veccxx(vecaxxvecb)=0 (D) none of these