Home
Class 12
MATHS
The equation vecr-2vecr.vecc+h=0, |vecc|...

The equation `vecr-2vecr.vecc+h=0, |vecc|gtsqrt(h)` represents (A) circle (B) ellipse (C) cone (D) sphere

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca,vecb,vecc are three non coplanar vectors then the vector equation vecr=(1-p-q)veca+pvecb+qvecc are represents a: (A) straighat line (B) plane (C) plane passing through the origin (D) sphere

The equation vecr=lamda hati+muhatj represents the plane (A) x=0 (B) z=0 (C) y=0 (D) none of these

Let veda,vecb,vecc be three noncolanar vectors and vecp,vecq,vecr are vectors defined by the relations vecp= (vecbxxvecc)/([veca vecb vecc]), vecq= (veccxxvecca)/([veca vecb vecc]), vecr= (vecaxxvecb)/([veca vecb vecc]) then the value of the expression (veca+vecb).vecp+(vecb+vecc).vecq+(vecc+veca).vecr . is equal to (A) 0 (B) 1 (C) 2 (D) 3

If veca,vecb,vecc are unit vectors such that veca is perpendicular to vecb and vecc and |veca+vecb+vecc|=1 then the angle between vecb and vecc is (A) pi/2 (B) pi (C) 0 (D) (2pi)/3

If veca,vecb,vecc are three unit vectors such that veca+vecb+vecc=0, then veca.vecb+vecb.vecc+vecc.veca is equal to (A) -1 (B) 3 (C) 0 (D) -3/2

If veca,vecb,vecc are unit coplanar vectors than [2veca-vecb,2vecb-vecc, 2vecc-veca]= (A) 1 (B) 0 (C) -sqrt(3) (D) sqrt(3)

The non zero vectors veca,vecb, and vecc are related byi veca=8vecb nd vecc=-7vecb. Then the angle between veca and vecc is (A) pi (B) 0 (C) pi/4 (D) pi/2

The condition for equations vecrxxveca = vecb and vecr xx vecc = vecd to be consistent is

If vecc=vecaxxvecb and vecb=veccxxveca then (A) veca.vecb=vecc^2 (B) vecc.veca.=vecb^2 (C) veca_|_vecb (D) veca||vecbxxvecc

The non zero vectors veca,vecb and vecc are related by veca=(8) vecb and vecc=-7vecb. Then angle between veca and vecc is (A) pi/2 (B) pi (C) 0 (D) pi/4