Home
Class 12
MATHS
If veca, vecb, vecc are unit vectors, th...

If `veca, vecb, vecc` are unit vectors, then `|veca-vecb|^2+|vecb-vecc|^2+|vecc-veca|^2` does not exceed `(A) 4 (B) 9 (C) 8 (D) 6`

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca,vecb,vecc are unit vectors satisfying |veca-vecb|^2+|vecb-vecc|^2+|vecc-veca|^2=9 then |2veca+5vecb+3vecc| is

If veca, vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,7vecb-9vecc,10vecc-23veca)]

If veca,vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,7vecb-9vecc,12vecc-23vecb)] is equal to

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If veca, vecb and vecc are unit vectors satisfying |veca-vecb|^(2)+|vecb-vecc|^(2)+|vecc-veca|^(2)=9 " then " |2veca+ 5vecb+ 5vecc| is

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

If veca, vecb, vecc are non-null non coplanar vectors, then [(veca-2vecb+vecc, vecb-2vecc+veca, vecc-2veca+vecb)]=

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to

If |veca|=|vecb|=|vecc|=1 and |veca-vecb|^(2)+|vecb-vecc|^(2)+|vecc-veca|^(2)=9 then |2veca+5vecb+5vecc|=?